Hematology Alterations:
Altered Erythrocyte Function
Macrocytic and Microcytic Anemia

Mary DeLetter, PhD, RN
Associate Professor
Dept. of Baccalaureate and Graduate Nursing
Eastern Kentucky University
Anemia

Definition
- ↓ total number of circulating erythrocytes
- ↓ quality or quantity of hemoglobin

Causes (individual or combined)
- Impaired erythrocyte production
- Increased erythrocyte destruction
- Blood loss
Anemia

Classification

- **Causes**
- **Changes in morphology**
 - *-cytic – changes in cell size*
 - *-chromic – changes in Hgb content*

Terminology for Erythrocyte Assessment

<table>
<thead>
<tr>
<th></th>
<th>Erythrocyte Volume</th>
<th>Hgb Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Normocytic</td>
<td>Normochromic</td>
</tr>
<tr>
<td>Increased</td>
<td>Macrocytic (↑ MCV)</td>
<td>Hyperchromic (↑ Hgb)</td>
</tr>
<tr>
<td>Decreased</td>
<td>Microcytic (↓ MCV)</td>
<td>Hypochromic (↓ Hgb)</td>
</tr>
</tbody>
</table>

McCance & Huether, 2014, Table 28-2
Anemia

Classification by Etiology

- Decreased RBC Production
 - Decreased Hg Synthesis
 - Examples: Iron deficiency, Thalassemias
 - Defective DNA Synthesis
 - Examples: Vit B12 deficiency, Folic acid deficiency
 - Decreased # of RBC Precursors
 - Examples: Aplastic anemia, Leukemia

- Blood Loss
 - Acute
 - Examples: Trauma, Blood vessel rupture
 - Chronic
 - Examples: Gastritis, Menstruation, Hemorrhoids

- Increased RBC Destruction (hemolytic anemias)
 - Intrinsic
 - Examples: Sickle cell anemia
 - Extrinsic
 - Examples: Physical trauma (prosthetic heart valve), Antibodies, Infections/toxins
Anemia

- Overall effect
 Reduced O_2 carrying capacity of the blood $\rightarrow \rightarrow$ Hypoxia

- Compensatory mechanisms
 - \uparrow preload
 - \uparrow HR
 - \uparrow SV
 - \downarrow afterload

 \uparrow CO

 Maintain adequate tissue oxygenation
Anemia: Progression and Manifestations

Etiologic events
(↓ erythropoiesis)
(blood loss)
(↑ destruction)

↓ Red blood cells, ↓ hemoglobin
(anemic condition)

↓ Oxygen-carrying capacity
(hypoxemia)

Ischemia
Claudication (muscle)
Weakness, ↑ fatigue
Pallor (skin/mucous membrane)

Liver
(fatty changes; fatty changes can also occur in heart and kidney)

Tissue hypoxia

Respiratory
(↑ respiratory rate, depth, “exertional dyspnea”)

Central nervous system
(dizziness, fainting, lethargy)

Compensatory mechanisms

Heart (angina)

↑ Oxygen demands for work of heart

↑ Heart rate

Cardiovascular

Capillary dilation

↑ SV

↑ Renin-aldosterone response
↑ Salt and H₂O retention
↑ Extracellular fluid

↑ Extracellular fluid

Hyperdynamic circulation

Cardiac murmurs

High-output cardiac failure

↑ Release of oxygen from hemoglobin in tissues

↑ BPG in cells

McCance & Huether, 2014, Figure 28-2
Anemia - Clinical Manifestations

<table>
<thead>
<tr>
<th>Body System</th>
<th>Clinical Manifestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular</td>
<td>↑ HR, CHF, Angina, MI</td>
</tr>
<tr>
<td>Pulmonary</td>
<td>↑ RR, orthopnea, dyspnea</td>
</tr>
<tr>
<td>Neurologic</td>
<td>H/A, vertigo, depression, impaired cognition</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>Anorexia, hepatomegaly, splenomegaly</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>Fatigue, bone pain</td>
</tr>
<tr>
<td>Integumentary</td>
<td>Pallor, pruritis</td>
</tr>
<tr>
<td>General</td>
<td>Lethargy, sensitivity to cold, weight loss</td>
</tr>
</tbody>
</table>
Macrocytic (Megaloblastic) Anemias

- Pathophysiology

 Vitamin deficiencies (B₁₂ or Folate)
 \[\downarrow \]
 Defective erythrocyte precursor
 DNA synthesis
 \[\downarrow \]
 Unusually large stem cells in bone marrow
 \[\downarrow \]
 Erythrocyte changes:
 Unusually large size
 No pale center
 Normal Hgb

- Types
 - Pernicious
 - Folate Deficiency
Pernicious Anemia – Vit B_{12}

- Most common megaloblastic anemia
- Deficiency of B_{12}
- Common over age 50

Pathophysiology

- Absence of Intrinsic Factor (IF) (gastric parietal cells)
- ↓ IF binding with dietary B_{12}
- ↓ small intestine absorption of B_{12}
- Defective DNA synthesis in erythrocytes
Pernicious Anemia – Vit B$_{12}$

Causes
- **Chronic atrophic gastritis (autoimmune) – Type A**
 - Genetic
 - Other endocrine autoimmune disorders

- **Excessive damage to gastric mucosa**
 - Alcohol, caffeine, smoking

- **Gastrectomy (partial/full)**

- **Helicobacter pylori gastritis - Type B**

Unique Clinical Manifestations
- **Insidious onset – B$_{12}$ liver storage**
- **Severe at time of diagnosis**
Folate Deficiency Anemia

Pathophysiology

- ↓ RBC production and maturation:
 - Altered DNA synthesis → Megaloblastic cells with clumped nuclear chromatin
 - Apoptosis of erythrocytes during late stage of erythropoiesis
Folate Deficiency Anemia

- Complications of Folate deficiency
 - Pregnancy - Neural tube defects
 - ↑ circulating homocysteine → atherosclerosis
 - Colorectal cancers

- Unique Clinical Manifestations
 - Ulcerations of lips, mouth, buccal mucosa
Microcytic Anemia

Characteristics

- Erythrocytes: Small
- Reduced Hgb

Caused by disorders of:

- Iron metabolism
- Synthesis of hemoglobin components:
 - Heme (porphyrin) - pigment
 - Globin - protein
Iron-deficiency Anemia

- Most common anemia world-wide
- Causes
 - Inadequate dietary intake
 - Infants, small children, adolescents, pregnant women
 - Chronic blood loss
 - GI bleeding
 - Pathologic
 - Medication-induced (ASA, NSAIDS)
 - Menorrhagia
 - Impaired GI absorption
 - Decreased gastric acid production – proton pump inhibitors – Omeprozole
 - Lead Poisoning
Pathophysiology

1. Depletion of iron stores
 - Inadequate iron intake
 - Excessive blood loss
 - Less iron available in bone marrow
 - ↓ Hgb Synthesis

2. Metabolic dysfunction
 - Insufficient iron delivery to bone marrow
 - Impaired iron use by bone marrow
 - ↓ Hgb Synthesis
Iron-deficiency Anemia

Pathophysiology:
Iron needs > iron availability

<table>
<thead>
<tr>
<th>Stage</th>
<th>Pathophysiology</th>
<th>Erythropoiesis</th>
</tr>
</thead>
</table>
| Stage 1 | • Depletion of iron stores
 • Serum ferritin level drops | • Normal – Hgb normal |
| Stage 2 | • Ferritin depletion
 • ↓ transportation of iron to bone marrow
 • Serum iron level drops | • Iron-deficiency erythropoiesis
 • ↓ Hgb production |
| Stage 3 | • Iron-deficient RBC in circulation outnumber mature RBC
 • Iron stores depleted | • Erythrocytes are hypochromic and microcytic
 • ↓↓↓ Hgb production
 • S/S Iron-deficiency anemia |
Iron-deficiency Anemia

Unique Clinical Manifestations

- **Early**
 - Fatigue, weakness, SOB

- **Progressive**
 - Epithelial tissue changes (nails)
 - Glossitis
 - Dysphagia
 - Hyposalivation
 - Esophageal web development

McCance & Huether, 2014, Figure 28-4
Hematology Alterations:
Altered Erythrocyte Function
Macrocytic and Microcytic Anemia